Copied to
clipboard

G = C42.77D6order 192 = 26·3

77th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.77D6, C4⋊Q8.8S3, (C2×Q8).67D6, (C2×C12).294D4, C12.79(C4○D4), C12.6Q8.9C2, (C6×Q8).61C22, C4.25(D42S3), (C4×C12).129C22, (C2×C12).400C23, Q82Dic3.12C2, C6.46(C4.4D4), C6.94(C8.C22), C42.S3.8C2, C4⋊Dic3.160C22, C2.13(C23.12D6), C2.15(Q8.11D6), C34(C42.30C22), (C3×C4⋊Q8).8C2, (C2×C6).531(C2×D4), (C2×C4).72(C3⋊D4), (C2×C3⋊C8).134C22, (C2×C4).497(C22×S3), C22.203(C2×C3⋊D4), SmallGroup(192,641)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.77D6
C1C3C6C2×C6C2×C12C2×C3⋊C8C42.S3 — C42.77D6
C3C6C2×C12 — C42.77D6
C1C22C42C4⋊Q8

Generators and relations for C42.77D6
 G = < a,b,c,d | a4=b4=1, c6=b2, d2=a2b2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=dbd-1=b-1, dcd-1=a2bc5 >

Subgroups: 208 in 90 conjugacy classes, 39 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, Q8, Dic3, C12, C12, C2×C6, C42, C4⋊C4, C2×C8, C2×Q8, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C2×C12, C3×Q8, C8⋊C4, Q8⋊C4, C42.C2, C4⋊Q8, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, C4×C12, C3×C4⋊C4, C6×Q8, C42.30C22, C42.S3, Q82Dic3, C12.6Q8, C3×C4⋊Q8, C42.77D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4.4D4, C8.C22, D42S3, C2×C3⋊D4, C42.30C22, C23.12D6, Q8.11D6, C42.77D6

Character table of C42.77D6

 class 12A2B2C34A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H12I12J
 size 111122244882424222121212124444448888
ρ1111111111111111111111111111111    trivial
ρ2111111111-1-1-1-11111111111111-1-1-1-1    linear of order 2
ρ31111111-1-11-11-11111-1-11-1-11-1-111-11-1    linear of order 2
ρ41111111-1-1-11-111111-1-11-1-11-1-11-11-11    linear of order 2
ρ51111111-1-1-111-1111-111-1-1-11-1-11-11-11    linear of order 2
ρ61111111-1-11-1-11111-111-1-1-11-1-111-11-1    linear of order 2
ρ711111111111-1-1111-1-1-1-11111111111    linear of order 2
ρ8111111111-1-111111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ922222-2-22-20000222000022-2-2-2-20000    orthogonal lifted from D4
ρ102222-122222200-1-1-10000-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ112222-122-2-22-200-1-1-1000011-111-1-11-11    orthogonal lifted from D6
ρ122222-122-2-2-2200-1-1-1000011-111-11-11-1    orthogonal lifted from D6
ρ1322222-2-2-2200002220000-2-2-222-20000    orthogonal lifted from D4
ρ142222-12222-2-200-1-1-10000-1-1-1-1-1-11111    orthogonal lifted from D6
ρ152222-1-2-2-220000-1-1-10000111-1-11-3--3--3-3    complex lifted from C3⋊D4
ρ162222-1-2-22-20000-1-1-10000-1-11111-3-3--3--3    complex lifted from C3⋊D4
ρ172222-1-2-22-20000-1-1-10000-1-11111--3--3-3-3    complex lifted from C3⋊D4
ρ182222-1-2-2-220000-1-1-10000111-1-11--3-3-3--3    complex lifted from C3⋊D4
ρ1922-2-222-2000000-2-2202i-2i000-20020000    complex lifted from C4○D4
ρ2022-2-222-2000000-2-220-2i2i000-20020000    complex lifted from C4○D4
ρ2122-2-22-22000000-2-222i00-2i00200-20000    complex lifted from C4○D4
ρ2222-2-22-22000000-2-22-2i002i00200-20000    complex lifted from C4○D4
ρ2344-4-4-24-400000022-2000000200-20000    symplectic lifted from D42S3, Schur index 2
ρ244-4-444000000004-4-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ254-44-4400000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-4-2-4400000022-2000000-20020000    symplectic lifted from D42S3, Schur index 2
ρ274-44-4-2000000002-2200002-3-2-300000000    complex lifted from Q8.11D6
ρ284-44-4-2000000002-220000-2-32-300000000    complex lifted from Q8.11D6
ρ294-4-44-200000000-22200000002-3-2-300000    complex lifted from Q8.11D6
ρ304-4-44-200000000-2220000000-2-32-300000    complex lifted from Q8.11D6

Smallest permutation representation of C42.77D6
Regular action on 192 points
Generators in S192
(1 92 46 151)(2 152 47 93)(3 94 48 153)(4 154 37 95)(5 96 38 155)(6 156 39 85)(7 86 40 145)(8 146 41 87)(9 88 42 147)(10 148 43 89)(11 90 44 149)(12 150 45 91)(13 53 64 105)(14 106 65 54)(15 55 66 107)(16 108 67 56)(17 57 68 97)(18 98 69 58)(19 59 70 99)(20 100 71 60)(21 49 72 101)(22 102 61 50)(23 51 62 103)(24 104 63 52)(25 165 141 116)(26 117 142 166)(27 167 143 118)(28 119 144 168)(29 157 133 120)(30 109 134 158)(31 159 135 110)(32 111 136 160)(33 161 137 112)(34 113 138 162)(35 163 139 114)(36 115 140 164)(73 192 180 123)(74 124 169 181)(75 182 170 125)(76 126 171 183)(77 184 172 127)(78 128 173 185)(79 186 174 129)(80 130 175 187)(81 188 176 131)(82 132 177 189)(83 190 178 121)(84 122 179 191)
(1 143 7 137)(2 138 8 144)(3 133 9 139)(4 140 10 134)(5 135 11 141)(6 142 12 136)(13 131 19 125)(14 126 20 132)(15 121 21 127)(16 128 22 122)(17 123 23 129)(18 130 24 124)(25 38 31 44)(26 45 32 39)(27 40 33 46)(28 47 34 41)(29 42 35 48)(30 37 36 43)(49 77 55 83)(50 84 56 78)(51 79 57 73)(52 74 58 80)(53 81 59 75)(54 76 60 82)(61 191 67 185)(62 186 68 192)(63 181 69 187)(64 188 70 182)(65 183 71 189)(66 190 72 184)(85 117 91 111)(86 112 92 118)(87 119 93 113)(88 114 94 120)(89 109 95 115)(90 116 96 110)(97 180 103 174)(98 175 104 169)(99 170 105 176)(100 177 106 171)(101 172 107 178)(102 179 108 173)(145 161 151 167)(146 168 152 162)(147 163 153 157)(148 158 154 164)(149 165 155 159)(150 160 156 166)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 80 40 169)(2 97 41 51)(3 78 42 179)(4 107 43 49)(5 76 44 177)(6 105 45 59)(7 74 46 175)(8 103 47 57)(9 84 48 173)(10 101 37 55)(11 82 38 171)(12 99 39 53)(13 156 70 91)(14 110 71 165)(15 154 72 89)(16 120 61 163)(17 152 62 87)(18 118 63 161)(19 150 64 85)(20 116 65 159)(21 148 66 95)(22 114 67 157)(23 146 68 93)(24 112 69 167)(25 100 135 54)(26 75 136 176)(27 98 137 52)(28 73 138 174)(29 108 139 50)(30 83 140 172)(31 106 141 60)(32 81 142 170)(33 104 143 58)(34 79 144 180)(35 102 133 56)(36 77 134 178)(86 187 151 124)(88 185 153 122)(90 183 155 132)(92 181 145 130)(94 191 147 128)(96 189 149 126)(109 127 164 190)(111 125 166 188)(113 123 168 186)(115 121 158 184)(117 131 160 182)(119 129 162 192)

G:=sub<Sym(192)| (1,92,46,151)(2,152,47,93)(3,94,48,153)(4,154,37,95)(5,96,38,155)(6,156,39,85)(7,86,40,145)(8,146,41,87)(9,88,42,147)(10,148,43,89)(11,90,44,149)(12,150,45,91)(13,53,64,105)(14,106,65,54)(15,55,66,107)(16,108,67,56)(17,57,68,97)(18,98,69,58)(19,59,70,99)(20,100,71,60)(21,49,72,101)(22,102,61,50)(23,51,62,103)(24,104,63,52)(25,165,141,116)(26,117,142,166)(27,167,143,118)(28,119,144,168)(29,157,133,120)(30,109,134,158)(31,159,135,110)(32,111,136,160)(33,161,137,112)(34,113,138,162)(35,163,139,114)(36,115,140,164)(73,192,180,123)(74,124,169,181)(75,182,170,125)(76,126,171,183)(77,184,172,127)(78,128,173,185)(79,186,174,129)(80,130,175,187)(81,188,176,131)(82,132,177,189)(83,190,178,121)(84,122,179,191), (1,143,7,137)(2,138,8,144)(3,133,9,139)(4,140,10,134)(5,135,11,141)(6,142,12,136)(13,131,19,125)(14,126,20,132)(15,121,21,127)(16,128,22,122)(17,123,23,129)(18,130,24,124)(25,38,31,44)(26,45,32,39)(27,40,33,46)(28,47,34,41)(29,42,35,48)(30,37,36,43)(49,77,55,83)(50,84,56,78)(51,79,57,73)(52,74,58,80)(53,81,59,75)(54,76,60,82)(61,191,67,185)(62,186,68,192)(63,181,69,187)(64,188,70,182)(65,183,71,189)(66,190,72,184)(85,117,91,111)(86,112,92,118)(87,119,93,113)(88,114,94,120)(89,109,95,115)(90,116,96,110)(97,180,103,174)(98,175,104,169)(99,170,105,176)(100,177,106,171)(101,172,107,178)(102,179,108,173)(145,161,151,167)(146,168,152,162)(147,163,153,157)(148,158,154,164)(149,165,155,159)(150,160,156,166), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,80,40,169)(2,97,41,51)(3,78,42,179)(4,107,43,49)(5,76,44,177)(6,105,45,59)(7,74,46,175)(8,103,47,57)(9,84,48,173)(10,101,37,55)(11,82,38,171)(12,99,39,53)(13,156,70,91)(14,110,71,165)(15,154,72,89)(16,120,61,163)(17,152,62,87)(18,118,63,161)(19,150,64,85)(20,116,65,159)(21,148,66,95)(22,114,67,157)(23,146,68,93)(24,112,69,167)(25,100,135,54)(26,75,136,176)(27,98,137,52)(28,73,138,174)(29,108,139,50)(30,83,140,172)(31,106,141,60)(32,81,142,170)(33,104,143,58)(34,79,144,180)(35,102,133,56)(36,77,134,178)(86,187,151,124)(88,185,153,122)(90,183,155,132)(92,181,145,130)(94,191,147,128)(96,189,149,126)(109,127,164,190)(111,125,166,188)(113,123,168,186)(115,121,158,184)(117,131,160,182)(119,129,162,192)>;

G:=Group( (1,92,46,151)(2,152,47,93)(3,94,48,153)(4,154,37,95)(5,96,38,155)(6,156,39,85)(7,86,40,145)(8,146,41,87)(9,88,42,147)(10,148,43,89)(11,90,44,149)(12,150,45,91)(13,53,64,105)(14,106,65,54)(15,55,66,107)(16,108,67,56)(17,57,68,97)(18,98,69,58)(19,59,70,99)(20,100,71,60)(21,49,72,101)(22,102,61,50)(23,51,62,103)(24,104,63,52)(25,165,141,116)(26,117,142,166)(27,167,143,118)(28,119,144,168)(29,157,133,120)(30,109,134,158)(31,159,135,110)(32,111,136,160)(33,161,137,112)(34,113,138,162)(35,163,139,114)(36,115,140,164)(73,192,180,123)(74,124,169,181)(75,182,170,125)(76,126,171,183)(77,184,172,127)(78,128,173,185)(79,186,174,129)(80,130,175,187)(81,188,176,131)(82,132,177,189)(83,190,178,121)(84,122,179,191), (1,143,7,137)(2,138,8,144)(3,133,9,139)(4,140,10,134)(5,135,11,141)(6,142,12,136)(13,131,19,125)(14,126,20,132)(15,121,21,127)(16,128,22,122)(17,123,23,129)(18,130,24,124)(25,38,31,44)(26,45,32,39)(27,40,33,46)(28,47,34,41)(29,42,35,48)(30,37,36,43)(49,77,55,83)(50,84,56,78)(51,79,57,73)(52,74,58,80)(53,81,59,75)(54,76,60,82)(61,191,67,185)(62,186,68,192)(63,181,69,187)(64,188,70,182)(65,183,71,189)(66,190,72,184)(85,117,91,111)(86,112,92,118)(87,119,93,113)(88,114,94,120)(89,109,95,115)(90,116,96,110)(97,180,103,174)(98,175,104,169)(99,170,105,176)(100,177,106,171)(101,172,107,178)(102,179,108,173)(145,161,151,167)(146,168,152,162)(147,163,153,157)(148,158,154,164)(149,165,155,159)(150,160,156,166), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,80,40,169)(2,97,41,51)(3,78,42,179)(4,107,43,49)(5,76,44,177)(6,105,45,59)(7,74,46,175)(8,103,47,57)(9,84,48,173)(10,101,37,55)(11,82,38,171)(12,99,39,53)(13,156,70,91)(14,110,71,165)(15,154,72,89)(16,120,61,163)(17,152,62,87)(18,118,63,161)(19,150,64,85)(20,116,65,159)(21,148,66,95)(22,114,67,157)(23,146,68,93)(24,112,69,167)(25,100,135,54)(26,75,136,176)(27,98,137,52)(28,73,138,174)(29,108,139,50)(30,83,140,172)(31,106,141,60)(32,81,142,170)(33,104,143,58)(34,79,144,180)(35,102,133,56)(36,77,134,178)(86,187,151,124)(88,185,153,122)(90,183,155,132)(92,181,145,130)(94,191,147,128)(96,189,149,126)(109,127,164,190)(111,125,166,188)(113,123,168,186)(115,121,158,184)(117,131,160,182)(119,129,162,192) );

G=PermutationGroup([[(1,92,46,151),(2,152,47,93),(3,94,48,153),(4,154,37,95),(5,96,38,155),(6,156,39,85),(7,86,40,145),(8,146,41,87),(9,88,42,147),(10,148,43,89),(11,90,44,149),(12,150,45,91),(13,53,64,105),(14,106,65,54),(15,55,66,107),(16,108,67,56),(17,57,68,97),(18,98,69,58),(19,59,70,99),(20,100,71,60),(21,49,72,101),(22,102,61,50),(23,51,62,103),(24,104,63,52),(25,165,141,116),(26,117,142,166),(27,167,143,118),(28,119,144,168),(29,157,133,120),(30,109,134,158),(31,159,135,110),(32,111,136,160),(33,161,137,112),(34,113,138,162),(35,163,139,114),(36,115,140,164),(73,192,180,123),(74,124,169,181),(75,182,170,125),(76,126,171,183),(77,184,172,127),(78,128,173,185),(79,186,174,129),(80,130,175,187),(81,188,176,131),(82,132,177,189),(83,190,178,121),(84,122,179,191)], [(1,143,7,137),(2,138,8,144),(3,133,9,139),(4,140,10,134),(5,135,11,141),(6,142,12,136),(13,131,19,125),(14,126,20,132),(15,121,21,127),(16,128,22,122),(17,123,23,129),(18,130,24,124),(25,38,31,44),(26,45,32,39),(27,40,33,46),(28,47,34,41),(29,42,35,48),(30,37,36,43),(49,77,55,83),(50,84,56,78),(51,79,57,73),(52,74,58,80),(53,81,59,75),(54,76,60,82),(61,191,67,185),(62,186,68,192),(63,181,69,187),(64,188,70,182),(65,183,71,189),(66,190,72,184),(85,117,91,111),(86,112,92,118),(87,119,93,113),(88,114,94,120),(89,109,95,115),(90,116,96,110),(97,180,103,174),(98,175,104,169),(99,170,105,176),(100,177,106,171),(101,172,107,178),(102,179,108,173),(145,161,151,167),(146,168,152,162),(147,163,153,157),(148,158,154,164),(149,165,155,159),(150,160,156,166)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,80,40,169),(2,97,41,51),(3,78,42,179),(4,107,43,49),(5,76,44,177),(6,105,45,59),(7,74,46,175),(8,103,47,57),(9,84,48,173),(10,101,37,55),(11,82,38,171),(12,99,39,53),(13,156,70,91),(14,110,71,165),(15,154,72,89),(16,120,61,163),(17,152,62,87),(18,118,63,161),(19,150,64,85),(20,116,65,159),(21,148,66,95),(22,114,67,157),(23,146,68,93),(24,112,69,167),(25,100,135,54),(26,75,136,176),(27,98,137,52),(28,73,138,174),(29,108,139,50),(30,83,140,172),(31,106,141,60),(32,81,142,170),(33,104,143,58),(34,79,144,180),(35,102,133,56),(36,77,134,178),(86,187,151,124),(88,185,153,122),(90,183,155,132),(92,181,145,130),(94,191,147,128),(96,189,149,126),(109,127,164,190),(111,125,166,188),(113,123,168,186),(115,121,158,184),(117,131,160,182),(119,129,162,192)]])

Matrix representation of C42.77D6 in GL8(𝔽73)

2283510000
651472340000
387251650000
1398590000
0000306000
0000134300
0000003060
0000001343
,
10000000
01000000
00100000
00010000
00000010
00000001
000072000
000007200
,
0072720000
00100000
7272000000
10000000
0000668926
00005114756
0000926675
000047566862
,
36641190000
433751320000
325437670000
224130360000
0000382758
000037355166
00007583571
000051663638

G:=sub<GL(8,GF(73))| [22,65,38,1,0,0,0,0,8,14,72,39,0,0,0,0,35,72,51,8,0,0,0,0,1,34,65,59,0,0,0,0,0,0,0,0,30,13,0,0,0,0,0,0,60,43,0,0,0,0,0,0,0,0,30,13,0,0,0,0,0,0,60,43],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,6,5,9,47,0,0,0,0,68,11,26,56,0,0,0,0,9,47,67,68,0,0,0,0,26,56,5,62],[36,43,32,22,0,0,0,0,6,37,54,41,0,0,0,0,41,51,37,30,0,0,0,0,19,32,67,36,0,0,0,0,0,0,0,0,38,37,7,51,0,0,0,0,2,35,58,66,0,0,0,0,7,51,35,36,0,0,0,0,58,66,71,38] >;

C42.77D6 in GAP, Magma, Sage, TeX

C_4^2._{77}D_6
% in TeX

G:=Group("C4^2.77D6");
// GroupNames label

G:=SmallGroup(192,641);
// by ID

G=gap.SmallGroup(192,641);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,477,64,590,135,184,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=b^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*b*c^5>;
// generators/relations

Export

Character table of C42.77D6 in TeX

׿
×
𝔽